

Funciones y módulos

● Objetivos:
– Presentar las nociones generales tras las funciones
– Recordar funciones vistas
– Cómo escribir nuestras propias funciones
– Por qué usarlas
– Introducción a los módulos
– Cómo crear módulos

Nociones generales de funciones

Funciones

Una función es un trozo de código que tiene:
● Inputs: también llamados argumentos o parámetros (van dentro de

los paréntesis)
● Es posible que una función reciba cero argumentos

● Output: el valor que es retornado (return) por la función

Una función es un mini-programa, pues tiene los mismos elementos de
un algoritmo. También y debido a esto, a veces se le llama subprograma
o subrutina (aunque estos términos son más generales).

Funciones ya conocidas (I)

Algunas funciones que ya hemos visto:
● int(x): recibe un valor e intenta convertirlo en un número entero

(tipo int)
● float(x): recibe un valor e intenta convertirlo en un número

decimal (tipo float)
● str(x): recibe un valor e intenta convertirlo en un texto (tipo str)
● input(): entrega un texto desde la entrada estándar (ej. el teclado)
● print(x1, x2, …): escribe los valores de x1, x2, …, en la salida

estándar (ej. la consola o terminal)
Los parámetros o argumentos van en los paréntesis.

Funciones ya conocidas (II)

Y además hemos visto:
● round(x,d): redondea el número x, dejando sólo d decimales
● abs(x): obtiene el valor absoluto de x, o sea,

● Si x es negativo, retorna -x (ej. abs(-5) retorna 5);
● Si no, retorna x (ej. abs(4) retorna 4).

● max(x1, x2, …): retorna el número más grande (el máximo) de
los números x1, x2, …,

● min(x1, x2, …): retorna el número más pequeño (el míximo) de
los números x1, x2, …,

Escribiendo funciones
(implementación)

¿Cómo creamos una función?

Las funciones se definen utilizando la instrucción def de la siguiente
manera:

def nombre_de_la_función(argumento1, argumento2, …):
 bloque de instrucciones
 (o mini procedimiento)
 que realiza lo que la
 función debe hacer
 return resultado

Las variables argumento1, argumento2, etc, se definen cada vez que se
invoca a la función. La instrucción return permite indicar qué valor
retornará la función.

Ejemplo

def minimo3(x, y, z):
 resp = x
 if y < resp:
 resp = y
 if z < resp:
 resp = z
 return resp

¿Cuáles son los parámetros o argumentos de la función?
¿Qué retorna la función?
¿Qué hace esta función?

Ejemplo

¿Qué imprime el siguiente código?

def minimo3(x, y, z):
 resp = x
 if y < resp:
 resp = y
 if z < resp:
 resp = z
 return resp

u = minimo3(25, 35, 15)
print(u)

Ejemplo 2

Considere el siguiente código:

def factorial(n):
 resp = 1
 for k in range(2, n+1):
 resp = resp * k
 return resp

¿Cuáles son los parámetros o argumentos de la función?
¿Qué retorna la función?
¿Qué hace esta función?

Dentro de las funciones podemos definir variables, tener secuencias if-
elif-else, tener ciclos/repeticiones while y for, etc.

def minimo3(x, y, z): def factorial(n):
 resp = x resp = 1
 if y < resp: for k in range(2,n+1):
 resp = y resp = resp * k
 if z < resp: return resp
 resp = z
 return resp

Esta función contiene
una estructura de ifs

Esta función contiene
una estructura de for

¡IMPORTANTE!

def factorial(n):
 resp = 1
 for k in range(2, n+1):
 resp = resp * k
 return resp

def combinacion(n, r):
 numer = factorial(n)
 denom = factorial(r) * factorial(n-r)
 return numer / denom

print(combinacion(8,2))
print(combinacion(11,3))

Podemos invocar funciones
desde otras funciones

¿Y para qué sirven?

¿Y para qué sirven las funciones?

● Las funciones nos permiten reutilizar código
● Programación estructurada:

– Ejecución de código sólo en algunas ocasiones: alternativas
● Todo lo que sería if-elif-else

– Repetir código de forma consecutiva: repeticiones
● Todo lo que sería for y while

– Reutilizar código en distintos lugares: funciones
● Se definen con def, pero se invocan por su nombre

● Podemos escribir código de forma más ordenada, abordando los
problemas por partes

Haciendo más legible el código

seguir = True
while seguir:
 menu_opciones()
 x = input()
 if x == "salir":
 seguir = False
 elif x == "etc":
 hacer_etc()

Estrategias de programación

● Divide y Vencerás. Dividir el problema en subproblemas o
partes más simples de resolver.

● KISS: Keep It Short & Simple. El código debe verse y
estar escrito de forma simple. No hay que complicarse demás.

● YAGNI: You Ain’t Gonna Need It. No agregar cosas que
no se van a usar.

● DRY: Don’t Repeat Yourself. Usar las funciones para
evitar tener que escribir código idéntico varias veces.

Introducción a los Módulos

Módulos

¿Qué hace el siguiente código?

import math

print(math.sqrt(1))
print(math.sqrt(4))
print(math.sqrt(9))
print(math.sqrt(16))

Módulos

¿Qué hace el siguiente código?

import math

print("Ingrese un numero:")

a = float(input())
b = math.sqrt(a)

print("La raiz cuadrada de", a, "es", b)

Módulos

¿Qué hace el siguiente código?

import math

print("Ingrese un numero positivo:")

a = float(input())
b = math.log(a)

print("El logaritmo natural de", a, "es", b)

Módulos: random

¿Qué hace el siguiente código?

import random

print("Diez numeros enteros entre 1 y 10:")

for r in range(10):
 u = random.randint(1, 10)
 print(u)

Módulos: random

¿Qué hace el siguiente código?

import random

print("Diez numeros decimales entre 1 y 10:")

for r in range(10):
 u = 1 + 9 * random.random()
 print(u)

Creando módulos

¿Qué es un módulo?

Un módulo es un simplemente programa en Python.

Podemos importar un programa en Python dentro de otro
programa en Python, de tal manera que podemos usar sus
funciones, variables, etc.

Generalmente se usan como sinónimos:
● Módulo
● Librería
● Biblioteca

Creando módulos

¿Cómo creamos un módulo?
Simplemente tenemos que guardar nuestro programa con su
extensión .py.

¿Cómo cargamos un módulo desde otro?
Escribiendo import mi_modulo, si es que nuestro módulo se llamó
mi_modulo.py.

¿Cómo usamos una función de un módulo?
Si la función se llama mi_funcion() y está en mi_modulo.py, entonces
podemos llamar a mi_funcion escribiendo mi_modulo.mi_funcion()
después de haber hecho import mi_modulo.

And thus, we are ready
to take on Control 2

(September the 3rd)

